Scientific Transactions
in Environment and
Technovation

= BVG Trust

= J. Sci. Trans. Environ. Technov. 2007, 1(1): 23-28

An efficient technique for outlier detection in data minin
10.20894/STET.116.001.001.004
E. Ramaraj and K. Subramanian™ www.stetjournals.com

Alagappa University, Computer Centre, Karaikudi - 630 003, Tamil Nadu, India

Abstract

The Outlier detection problem has important applications in the field of fraud detection, network robustness analysis and
intrusion detection. Most of such uses are high dimensional domains in which the data can contain hundreds of dimensions.
Many recent algorithms employed the concept of proximity in order to find the outliers based on their relationships to the
rest of data. But in high dimensional space, the data is sparse and the notation of proximity fails to retain its meaning. In
fact the sparsity of high dimensional data, the notation of finding meaningfull outliers becomes substantially more complex
and non-obvious. This article is an attempt to enhance outlier detection and analysis, which is an interesting data mining
task. This outlier mining has a plethora of applications in fraud detection and for finding abnormal responses in various
fields. In computer based outlier mining there are many methods and techniques. This work is an attempt to highlight the
merits and demerits on the application of these methods. This would enable to find a suitable technique for perfect outlier

detection. The main objective of this present article is to find out the best approach by comparative analysis.

Keywords : data mining, dataset, fraud detection, outlier detection

INTRODUCTION

Fraud detection is an outstanding data mining task
among the mining techniques, that has a lot of
practical applications in may different domains. Fraud
detection mining can be defined as follows: “Given a
set of N data points or objects and the number n of
expected outliers, find the top n objects that are
considerably dissimilar, exceptional or inconsistent
with respect to the remaining data”. Many data
mining algorithms consider outliers as noise that must
be eliminated because it degrades their predictive
accuracy (Aggarwal and Yu, 2001). For example, in
classification algorithms (Aluru and Sevilgen, 1997)
mislabeled instances are considered outliers and thus
they are removed from the training set to improve the
accuracy of the resulting classifier.

However, as pointed out “one person’s noise could be
another person’s signal”, outliers themselves can
be of great interest. Fraud detection can be used in
telecom or credit card frauds to detect the typical
usage of telecom services or credit cards. Fraud
detection actually consists of two sub problems-first is
to define what data is deemed to be exceptional in a
givendatasetand second is to find an efficient algorithm
to obtain such data (Arning ef al.,1996). Fraud detection
methods can be categorized in several approaches, each
assumes a specific concept of what exception is. Among
them, the distance-based approach, introduced by
Knorr and Ng (1998) adefinition of distance-based
outlier relies on the Euclidean distance between two
points. This kind of definition is relevant in a wide

*Corresponding author
subjjcit@rediffmail.com

July to September 2007

range of real-life application domains (Barnett and
Lewis, 1994).

In this paper we propose a new definition of outlier
(Yuetal., 1999; Breunig et al., 2000), distance-based and
an efficient algorithm, called FDHD, designed to detect
the top n outliers of a large and high-dimensional data
set. Given an application dependent parameter k, the
weight of a point is defined as the sum of the distances
separating it from its k nearest-neighbors. Exceptions
are thus the points scoring the largest values of weight
(Brodley and Friedl, 1996). The computation of the
weights, however, is an expensive task because it
involves the calculation of the k nearest neighbors of
each data point (Chan, 1997). To overcome this problem
we present a definition of approximate set of outliers.
Elements of this set have a weight greater than the
weight of true outliers within a small factor. This set of
points represents the points candidate to be the true
outliers (Faloutsos, 1986; Faloutsos and Roseman, 1989).
Thus we give an algorithm consisting of two phases.
The first phase provides an approximate solution,
within a factor O(kd1+1t),where d is the number of
dimensions of the data set and t identifies the Lt metrics
of interest, after executing at most d + 1 sorts and scans
of the data set, with temporal cost O(d2Nk) and 2 spatial
cost O(Nd), where N is the number of points in the data
set. The algorithm avoids the distance computation of
each pair of points because it makes use of the
space-filling curves to linearize the data set. We fit the
d-dimensional data set DB in the hypercube D = [0,1]
d, then we map D into the interval I = [0,1] by using the
Expert space filling curve and obtain the approximate
k nearest neighbors of each point by examining its
predecessors and successors on I. The mapping assures
that if two points are close in I, they are close in D too,

23 Scientific Transactions in Environment and Technovation

24 E. Ramaraj and K. Subramanian

although the reverse in not always true. To limit the
loss of nearness, the data set is shifted d + 1 times along
the main diagonal of the hypercube [0,2]d . During each
scan the algorithm calculates a lower and an upper
bound to the weight of each point and exploits such
information to isolate points candidate to belong to the
solution set. The number of points candidate to belong
to the solution set is sensibly reduced at each scan.
Hence, the first phase produces a set of approximate
outliers that are candidate to be the true outliers. The
second phase calculates the exact solution with a final
scan of temporal cost O(NxNd), where Nx is the
number of candidate outliers remained after the first
phase. Experimental results show that the algorithm
always stops, reporting the exact solution, during the
first phase after d steps, with d much less than d + 1.
We present both an in-memory and disk-based
implementation of the FDHD algorithm and a
throughout scaling analysis for real and synthetic data
sets showing that the algorithm scales well in both cases.

DEFINING OUTLIERS
Definition 1

Let t be a positive number, then the Lt distance
between two points p = (p1,...,pd) and q =(ql,....qd) of
Rd is defined as dt(p,q) = (di=11pi- qilt) 1/t for
1<t <oo,and as max 1<i<dlpi-qil, t = oo. Definition
1 (Weight) Let DB be a d-dimensional data set, k a
parameter and p a point of DB. Then the weight of p in
DB is defined as w k(p) =ki=1dt(p,nni(p)), where nni(p)
denotes the i-th nearest neighborhood of p in DB
according to the Lt distance. That is, the weight of a
point is the sum of the distances separating that point
from its k nearest neighbors. Intuitively, the notion of
weight captures the degree of isolation of a point with
respect to its neighbors, higher is its weight, more
distant are its neighbors (Han and Kamber, 2001).

Definition 2

Let DB be a data set, k and n two parameters, and let
p be a point of DB. Then p is the nth outlier with respect
to k in DB, denoted as outlier nk, if there are exactly
n - 1 points q in DB such that wk(q) = wk(p). We denote
with Out nk the set of the top n outliers of DB with
respect to k. Thus, given n, the expected number of
outliers in the data set, and an application dependent
parameter k, specifying the size of the neighborhood
of interest, the outlier detection problem consists in
finding the n points of the data set scoring the maximum
wk values. The computation of the weights is an
expensive task because it involves the calculation of k
nearest neighbors of each data point. While this problem
is well solved in any fixed dimension, requiring O(log
N) time to perform each search (with appropriate space
and preprocessing time bounds) , when the dimension
d is not fixed, the proposed solutions become

July to September 2007

J. Sci. Trans. Environ. Technov. 1(1), 2007
impracticable since they have running time logarithmic
in N but exponential in d. The lack of efficient
algorithms when the dimension is high is known as
“curse of dimensionality”. In these cases a simple linear
scan of the data set, requiring O(N2d) time, outperforms
the proposed solutions. From what above stated, at
the present, when large and high-dimensional data sets
are considered, a good algorithm for the solution of the
outlier detection problem is the naive nested-loop
algorithm which, in order to compute the weight of each
point, it must consider the distance from all the points
of the data set, thus requiring O(N2d) time. Data mining
applications, however, require algorithms that scale
near linearly with the size of the data set to be practically
applicable. An approach to overcome this problem
could be to first find an approximate, but fast, solution,
and then obtain the exact solution from the approximate
one. This motivate our definition of approximation of
a set of outliers.

Definition 3

Approximation of Out nk Let DB be a data set, let Out
x= {al,...,an} be a set of n points of DB, with
wk(ai) = wk(ai+1), fori=1,..,n -1, and let be a positive
real number greater than one. We say that Out x is
an -approximation of Outnk, if wk(ai) > wk (outlier ik),
or eachi=1,..n. In the following sections we give an
algorithm that computes an approximate solution
within a factor O(kd1+1t), where t is the Ltmetrics of
interest, runs in O(d2Nk) time and has spatial cost
O(Nd). The algorithm avoids the distance computation
of each pair of points because it makes use of the
space-filling curves to linearize the data set. To obtain
the k approximate nearest neighbors of each point p it
is sufficient to consider its successors and predecessors
on the linearized data set (Jagadish, 1990). The
algorithm produces a set of approximate (with respect
to the above definition) outliers that are candidates to
be the true outliers. The exact solution can then be
obtained from this candidate set at a low cost.

ALGORITHM

In this section we give the description of the FDHD
algorithm, which solves the Fraud Detection Problem.
The method consists of two phases, the first does at
most d + 1 sorts and scans of the input data set and
guarantees a solution that is an kd -approximation of
Outnk, where d= O(d1+1t), with a low time complexity
cost (Jagadish, 1990). The second phase does a single
scan of the data set and computes the set Outnk (Knorr
and Ng, 1998). At each scan FDHD computes a lower
bound and an upper bound to the weight of each point
and it maintains the n greatest lower bound values of
weight in a heap. The lowest value in this heap is a
lower bound to the weight of the n-th exception and it
is used to detect those points that can be considered

www.bvgt-journal.com

Scientific Transactions in Environment and Technovation

J. Sci. Trans. Environ. Technov. 1(1), 2007

candidate outliers. The upper and lower bound of the
weight of each point are computed by exploring the
neighborhood of the point according to the Expert
order. The size of this neighborhood is initially set to
2k, then it is widened, proportionally to the number of
remaining candidate outliers, to obtain a better estimate
of the true k nearest neighbors. At each iteration, as
experimental results show, the number of candidate
outliers sensibly diminishes (Knorr et al., 2000). This
allows the algorithm to find the exact solution in few
steps, in practice after d steps with d much less than
d + 1. The algorithm FDHD, receives as input a data
set DB of N points in the hypercube [0,1]d, the number
n of top outliers to find and the number k of neighbors
to consider (Lee et al., 1998). The data structures
employed by the algorithm are the two heaps OUT and
WLB, the set TOP, and the list of point features PF:
® OUT and WLB are two heaps of n point features. At
the end of each iteration, the features stored in OUT
are those with the n greatest values of the field ubound,
while the features stored in WLB are those with the n
greatest values of Ibound ¢ TOP is a set of at most 2n
point features which is set stored in OUT and WLB at
the end of the previous iteration ¢ PF is a list of point
features. In the following, with the notation Pfi we mean
the i-th element of the list PF First, the algorithm builds
the list PF associated to the input data set, i.e. for each
point p of DB a point feature f with its own f.id value,
f.point = p, f.ubound = oo, f.level and f.Jbound set to 0,
and f.nn = x, is inserted in PF, and initializes the set TOP
and the global variables wx, Nx, and nx:® ox is a lower
bound to the weight of the outlier nk in DB. This value,
initially set to 0, is then updated in the procedure Scan ¢
Nx is the number of point features f of PF such that
f.ubound > wx. The points whose point feature satisfies
the above relation are called candidate outliers because
the upper bound to their weight is greater than the
current lower bound wx. This value is updated in the
procedure Experte nx is the number of true outliers in
the heap OUT. It is updated in the procedure True
Outliers and itis equal to | {fx OUT : f.Ibound =f.ubound
>f.ubound = wx} | The main cycle, consists of at most d +
1 steps. We explain the single operations performed
during each step of this cycle.

The Expert procedure calculates the value H(PFi.point
+ v(j)) of each point feature PFi of PF, where j x {0,...,d}
identifies the current main iteration, places this value
in PFi .expert, and sorts the point features in the list
PF using as order key the values PFi.expert. Thus it
performs the Expert mapping of a shifted version of
the input data set. It is straight forward to note that the
shift operation does not alter the mutual distances
between the points in PF. As v(0)is the zero vector, at

www.bvgt-journal.com

July to September 2007

An efficient technique for outlier detection in data mining 25

the first step (j = 0) no shift is performed. Thus during
this step we work on the original data set. After sorting,
the procedure Expert up-dates the value of the field
level of each point feature. In particular, the value Pfi.
level is set to the order of the smallest r-region
containing both Pfi .point and PFi+1 .point, i.e, to
MinReg(Pfi .point, PFi+1.point), for eachi=1,..,N - 1.

Algorithm FDHD (DB, n, k)
{
Initialize(PF, DB);
TOP = x;
Nx =N;
nx =0;
ox =0;
j=0
while (j <= d) && (nx< n)
{
Initialize(OUT);
Initialize(WLB);
Expert(v(j));
Scan(v(j), kNNx);
TrueOutliers(OUT);
TOP = OUT WLB;
j++
if (nx< n)

Scan(v(d), N);
return OUT;
}

Scan.

This procedure performs a sequential scan of the list
PF by considering only those features that have a weight
upper bound not less than wx, the lower bound to the
weight of outlier nk of DB. These features are those
candidate to be outliers, the others are simply skipped.
If the value PFi.lbound is equal to Fi.ubound, then this
is the true weight of PFi.point in DB. Otherwise
PFi.ubound is an upper bound for the value wk
(PFi.point) and it could be improved. For this purpose
the function FastUpperBound calculates a novel upper
bound ® to the weight of PFi.point, given by kxMaxDist
(PFi.point,2-level 0), by examining k points among its
successors and predecessors to find level 0, the order
of the smallest r-region containing both PFi.point and
other k neighbors. If ® is less than wx, no further
elaboration is required. The procedure InnerScan
returns a new lower bound newlb and a new upper
bound newub for the weight of PFi.point (see the
description of InnerScan below for details regarding
the calculation of these bounds). If newlb is greater
than PFi.lbound then a better lower bound for the
weight of PFi.point is available, and the field Ibound,
is updated. Same considerations hold for the value
PFi.ubound. Next, the heaps OUT and WLB process

Scientific Transactions in Environment and Technovation

26 E. Ramarajand K. Subramanian

PFi. That is, if PFi.ubound is greater than the smallest
upper (lower resp.) bound .ubound (f.Ibound resp.)
stored in OUT (WLB resp.), then the point feature f
stored in OUT (WLB resp.) is replaced with PFi. Finally,
the lower bound wx to the weight of the n-th outlier is
updated if a greater lower bound has been computed.

Inner Scan

This procedure takes into account the set of points PF
a.point,...,PFi-1.point,PFi+1.point,..., Fb.point i.e, the
points whose Expert value lies in a one dimensional
neighborhood of the integer value PFi.expert. The
maximum size allowed for the above neighborhood is
stored in the input parameter maxcount. In particular,
if PFi belongs to TOP, i.e, the point is a candidate to be
one of the n top outliers we are searching for, then the
size b - a of the above neighborhood is at most N, the
size of the entire data set, otherwise this size is at most
2k0.

We note that the parameter kO, that is the number of
neighbors to consider on the above interval, of the
procedure Scan is set to kN/NXx, i.e, it is inversely
proportional to the number Nx of candidate outliers at
the beginning of the current main iteration. This allows
the algorithm to analyze further the remaining
candidate outliers, maintaining at the same time the
number of distance computations performed in each
iteration constant.

procedure Scan(v, k0);
{
for G =1; i<N; i++)
if (PFi.ubound >= wx)
{
if (PFi.lbound < PFi.ubound)
{
o := FastUpperBound(i);
if (0 < ox)
Fi.ubound := w;
else
{
maxcount := min(2k0,N);
if (PFix TOP)
maxcount := N;
InnerScan(i, maxcount, v, PFi.nn, newlb, newub);
if (newlb > PFi.lbound)
PFi.lbound := newlb;
if (newub < PFi.ubound)
PFi.ubound := newub;
}
}
Update(OUT, PFi);
Update(WLB, PFi);
ox:= max(wx, Min(WLB));
}
}

July to September 2007

J. Sci. Trans. Environ. Technov. 1(1), 2007
This procedure manages the set NN of at most k pairs
(id,dist), where id is the identifier of a point feature f
and dist is the distance between the current point
PFi.point and the pointf.point. The variable levela
(levelb respectively), initialized to the order h of the
approximation of the space filling curve, represents the
minimum among PFa-1.level, ..., PFi-1.level (Filevel,...,
Fb.level resp.) while level represents the maximum
between levela and levelb. Thus level+1 is the order of
the greatest entirely explored r-region (having side
r = 2-(level+1)) containingPFi.point. The values a and
b are initially set to i. Then, at each iteration of
InnerScan, the former is decreased or the latter is
increased, until a stop condition occurs or their
difference exceeds the maximum size allowed. In
particular, during each iteration, if PFa-1.level is greater
than PFb.level then a is decreased, else b is increased.
This enforces the algorithm to entirely explore the
current r-region, having order level, before starting the
exploration of the surrounding r-region, having order
level - 1. The distances between the point PFi.point and
the points of the above defined set are stored in NN by
the procedure Insert. In particular nsert(NN,id,dist)
works as follows: provided that the pair (id,dist) is not
already present in NN, if NN contains less then k
elements then procedure

InnerScan(i, maxcount, v, var NN, newlb, newub);
{
p = PFi.point;
Initialize(NN);
a=b=i
level =levela = levelb =h;
count = 0;
stop = false;
while ((count < maxcount)&é&(not stop))
{
count ++;
if (PFa-1.level > PFb.level)
{
a--;
levela = min(levela,PFa.level);
c=a;
else
{
levelb = min(levelb,PFb.level);
b ++;
c=b;
Insert(NN, PFc.id, dt(p,PFc.point));
if (Size(NN) = k)
{
if (Sum(NN) < wx)
{
stop = true;
else
if (max(levela,levelb) < level)
{

level = max(levela,levelb);

www.bvgt-journal.com

Scientific Transactions in Environment and Technovation

J. Sci. Trans. Environ. Technov. 1(1), 2007

& = MinDist(p,2-(level+1));
if (8 = Max(NN))

stop = true;

}

}

}

r = BoxRadius(p + v,PFa-1.point + v,PFb+1.point +
v);

newlb = SumLt(NN, r);
newub = Sum(NN);

}

The procedure InnerScan the pair (id,dist) is inserted
in NN, otherwise if dist is less than the smallest distance
stored in a pair of NN then this pair is replaced with
the pair (id,dist). The procedure InnerScan stops in two
cases. The first case occurs when the value Sum(NN) is
less than wx, where Sum(NN) denotes the sum of the
distances stored in each pair of NN, i.e, when the upper
bound to the weight of PFi.point just determined is less
than the lower bound to the weight of the outlier nk of
DB. This means that PFi.point is not an outlier. The
second case occurs when the value of level decreases
and the distance between PFi.point and the nearest face
of its 2 -(level+1)-region exceeds the value Max(NN),
i.e. the distance between PFi.point and its k-th nearest
neighbor in DB. This means that we already explored
the r-region containing both PFi.point and its k nearest
neighbors.

At the end of the procedure InnerScan, the function
BoxRadius calculates the radius r of the greatest entirely
explored neighborhood of PFi.point. This value can be
obtained by using lemma 1, more simply by exploiting
the values levela, levelb, PFa-1.level and PFb.level, i.e,as
2-max(min(level a,PFa-1.level), min(level b,PFb.level)
Finally, newlb is set to the sum of the distances stored
in NN that are less or equal than r while newub is set to
the sum of all the distances stored in NN. The main
cycle of the algorithm FDHD stops when nx= n, i.e,
when the heap OUT is equal to the set of top n outliers,
or after d + 1 iterations. At the end of the first phase,
the heap OUT contains a kd -approximation of Outnk.
Finally, if nx< n, that is if the number of true outliers
found by the algorithm is not n, then a final scan
computes the exact solution. During this final scan the
maximum size of the one dimensional neighborhood
to consider for each remained candidate outlier is N,
that is the entire data set. This terminates the description
of the algorithm.To conclude, we distinguish between
two versions of the above described algorithm:
* nn-FDHD: this version of FDHD uses extended point
features, i.e, the nearest neighbors of each point,
determined in the procedure InnerScan, are stored in
its associated point feature and then reused in the
following iterations. ® no-FDHD: this version uses point
features with the field nn always set to x, i.e,the nearest
point determined during each iteration are discarded

www.bvgt-journal.com

July to September 2007

An efficient technique for outlier detection in data mining 27

after their calculation. The former version of the
algorithm has extra memory requirements over the
latter version, but in general we expect that nn-FDHD
presents an improved pruning ability.

MEMORY-BASED ALGORITHM

We described the algorithm FDHD assuming that it
works with main memory resident data sets. Now we
show how the in-memory algorithm can be adapted to
manage efficiently disk-resident data sets (Moon et al.,
2000; Ramaswamy et al., 2000). Basically, the disk-based
implementation of FDHD has the same structure of its
memory-based counterpart. The main difference is that
the list PF is disk-resident, stored in a file of point
features. In particular, the disk-based algorithm
manages two files of point features, called F, and F_,
and has an additional input parameter BUF, that is the
size (in bytes) of the main memory buffer. First, the
Procedure Initialize creates the file F, with the
appropriate values, and with the field f.expert of each
record f set to H(f.point). The procedure Hilbert is
substituted by the procedure Sort, performing an
external sort of the file F, and producing the file F_,
ordered with respect to the field hilbert. We used the
polyphase merge sort with replacement selection to
establish initial runs to perform the external sort. This
procedure requires the number FIL of auxiliary files
allowed and the size BUF of the main memory buffer.
After the sort, F_ is set to the empty file. The
procedure Scan (and hence InnerScan) performs a
sequential scan of the file F working on a circular
buffer of size BUF containing a contiguous portion of
the file. We have the following differences with the
in-memory implementation: ® After a record is updated
(i.e,at the end of each iteration of Scan), it is appended
to the file F,_ with the field f.expert set to H(f.point +
v(j+1)), where j denotes the current main iteration of
the algorithm eThe maximum value allowed for the
parameter kO is limited by the number of records (point
features) fitting in the buffer of size BUF eThe records
of the set TOP are maintained in main memory during
the entire execution of Scan, compared with the entire
data set, and flushed at the end of the overall scan in
the appropriate position of the file F_. As for the
second phase of the algorithm, this is substituted by a
semi-naive nested-loop algorithm. In practice, the
records associated with the remaining candidate
outliers are stored in the main memory buffer and
compared with the entire data set until their upper
bound is greater than wx . The heaps OUT and WLB
are updated at the end of the scan. If the remained
candidate outliers do not fit into the buffer, then
multiple scans of the feature file are needed. When the
nn-FDHD version of the algorithm is considered, to save
space and speed up the external sort step, the
additional boolean field extended is added to every
record. This field specifies the size of the record.

Scientific Transactions in Environment and Technovation

28 E. Ramaraj and K. Subramanian

not contain the field nn, while f.extended set to 1 means
that the field nn is present in f. Thus we have records
of variable length. Only records associated with
candidate outliers have their field extended set to 1.
This field is managed as follows: ® When a record f is
appended to the file F, at the end of each iteration of
Scan, the field nn is added provided that f.ubound
2 ox ® The procedure Sort must support records of
variable length. Moreover, it is modified so that when
it builds the file F_ by sorting the file F,_, it discharges
the fields nn of the records f having f.ubound < wx (we
note that this condition could not be satisfied when the
record f is appended to F,_, as wx can decrease in the
following iterations of Scan) when the disk-based
implementation of the FDHD algorithm is considered,
the extra time needed to no-FDHD to prune points from
the data set, is partially balanced by the lower time
required to perform the external sort of the feature file
w.r.t. the nn-FDHD.

CONCLUSIONS

The new definition of outlier that is distance-based and
an algorithm, called FDHD, are designed to efficiently
detect the top n outliers of a large and high-dimensional
data set. The algorithm consists of two phases. The first
phase provides an approximate solution with temporal
cost O(d2Nk) and spatial cost O(Nd). The second phase
calculates the exact solution with a final scan. We
presented both an in-memory and disk-based
implementation of the FDHD algorithm to deal
with data sets that cannot fit into main memory.
Experimental results on real and synthetic data sets up
to 500,000 points in the 128-dimensional space showed
that the algorithm always stops, reporting the exact
solution, during the first phase, and that it scales well
with respect to both the dimensionality and the size of
the data set.

REFERENCES

Aggarwal, C.C. and Yu, P.S.2001. Outlier detection for high
dimensional data. In: Proc. ACM Int. Conference on Managment
of Data (SIGMOD’01) ACM Sigmoid Rec. 30. P. 37-46.

Aluru, S. and Sevilgen, F.E. 1997. Parallel domain decomposition
and load balancing using space-filling curves. In: Proc. Int.
Conf. on High Performace Computing. P. 230-235.

Arning, A., Aggarwal, C. and Raghavan, P. 1996. A linear method
for deviation detection in large databases. In: Proc. Int. Conf.
on Knowledge Discovery and Data Mining (KDD’96). P.164-
169.

Barnett, V. and Lewis, T. 1994. Outliers in Statistical Data. John
Wiley and Sons, New York.

Breunig, M.M., Kiriegel, H. , Ng, R.T. and Sander, J. 2000. LOF:
Identifying density-based local outliers. In: Proc. ACM Int.
Conf. on Managment of Data (SIGMOD’00). ACM Sigmoid

July to September 2007

J. Sci. Trans. Environ. Technov. 1(1), 2007

Rec. 29: 93-104.

Brodley, C. E. and Friedl, M. 1996. Identifying and eliminating
mislabeled training instances. In: Proc. National American Conf.
on Artificial Intelligence (AAAI/TAAI 96). P. 799-805.

Chan, T. 1997. Approximate nearest neighbor queries revisited.
In: Proc. 13th Annual ACM Symp. on Computational Geometry.
P. 352-358.

Faloutsos, C. 1986. Multiattribute hashing using gray codes. In:
Proc. ACM Int. Conference on Managment of Data (SIGMOD’86).
P. 227-238.

Faloutsos, C. and Roseman, S. 1989. Fractals for secondary key
retrieval. In: Proc. ACM Int. Conf. on Principles of Database
Systems (PODS’89). P. 247-252.

Han J. and Kamber, M. 2001. Data Mining, Concepts and Technique.
Morgan Kaufmann, San Francisco.

Jagadish, H.V. 1990. Linear clustering of objects with multiple
atributes. In: Proc. ACM Int. Conf. on Managment of Data
(SIGMOD’90). P. 332-342.

Knorr E. and Ng. R. 1998. Algorithms for mining distance-based
outliers in large datasets. In: Proc. Int. Conf. on Very Large
Databases (VLDB98). P. 392-403.

Knorr, E. Ng, R. and Tucakov, V. 2000. Distance-based outlier:
algorithms and applications. VLDB]. 8: 237-253.

Lee, W., Stolfo, S.J. and Mok. K.W. 1998. Mining audit data to
build intrusion detection models. In: Proc. Int. Conf on
Knowledge Discovery and Data mining (KDD-98). P. 66-72.

Moon, B., Jagadish, H.V., Faloutsos, C. and Saltz, J.H. 2001.
Analysis of the clustering properties of hilbert space-filling
curve. IEEE Trans. on Knowledge and Data Engineering
(IEEE-TKDE). 13: 124-141.

and Shim, K. 2000. Efficient
algorithms for mining outliers from large data sets. In: Proc.
ACM Int. Conf. on Managment of Data (SIGMOD’00). P. 427-
438.

Ramaswamy, S., Rastogi, R.

Yu, D., Sheikholeslami S. and Zhang, A. 1999. Findout: Finding
outliers in very large datasets. In: Tech. Report, 99-03, Univ.
of New York, Buffalo. P. 1-19.

www.bvgt-journal.com

Scientific Transactions in Environment and Technovation

